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ABSTRACT

This paper describes research conducted by the Software
Engineering Laboratory (SEL) on the use of dynamic variables as a
tool to monitor software development. The intent of the project
is to identify project independent measures which may be used in
a management tool for monitoring software development. This
study examines several FORTRAN projects with similar profiles.
The staff was experienced in developing these types of projects.
The projects developed serve similar functions. Because these
projects are similar we believe some underlying relationships
exist that are invariant between the projects. These relation-
ships, once well defined, may be used to compare the development
of different projects to determine whether they are evolving the

same way previous projects in this environment evolved.
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Monitoring Software Development
through Dynamic Variables

by
Carl W. Doerflinger

and
Vietor R. Basili

I. Overview

The Software Engineering Laboratory (SEL) is a joint effort
between the National Aeronautics and Space Administration (NASA),
the Computer Sciences Corporation (CSC), and the University of
Maryland established to study the software development process.
To this end, data has been collected for the last six years. The
data was from attitude determination and control software
developed by CSC, in FORTRAN, for NASA. Additional information
on the SEL, the data collection effort, and some of the studies
that have been made may be found in papers from the Software

Engineering Laboratory Series published by the SEL (Card82],

{Church82], [SEL82].

The 1interest in the software development process is
motivated by a desire to predict costs and quality of projects
being planned and developed. For several years, studies have
examined the relationships between variables such as effort,
size, lines of code, and documentation ([Walston77], [Basili81].
These studies, for the most part, used data collected at the end
of past projects to predict the behavibr of similar projects in

the future. In 1981 the SEL concluded that many of these factors




were too dependent on the environment to be useful for the models
that had been developed [Bailey81]. Any model which attempts to
trace these relationships should therefore be calibrated to the
environment being examined. The meta-model proposed by the SEL

is designed for such flexibility [Bailey81].

Another way to isolate out the environment dependent factors
is by comparing two internal factors of a project, thus ignoring
all outside influences. One appr;ach that is wused to monitor
software development examines the time gap between the initial
report of software problems and the complete resolution of the
problem [Manley82]. Comparing two variables is useful because it
also accentuates problem areas as they develop, providing rela-
tive information rather than absolute infprmation. Relative
information is useful to the project manager because ié accentu-
ates trends as the project develops. If project environments are
similar, then similar values should be expected. Because the
project environments in the SEL are similar, it was felt that
this approach could be further extended to provide managers with
information about how a set of variables over the course of a
project diffeéed from the same set of variables on other projects
(baselines). The managers could be alerted to potential problems
and use other variable data and project knowledge to determine

whether the project was in trouble.

This methodology is flexible enough to respond to changing
needs. Every time a project is completed the measures collected

during its development may be added in to calculate a new




baseline. 1In this way, the baselines may adapt to any changes in

the environment, as they occur.

Baselines might also be developed to reflect different
attributes. For 1instance, several projects which had good pro-
ductivity might be grouped to form a productivity baseline. Once
baselines are established, projects in progress may be compared
against them. All measures falling outside the predetermined

tolerance range are interpreted by the manager.

II. Methodology

The implementation of this methodology is dependent on two
factors. The first factor is the availability of measures that
are project independent and can also be collected throughout a
project’s development. Variables 1like programmer hours and
number of computer runs are project dependent. By comparing
these variables against each other a set of relative measures may
be generated which is project independent. For instance, the
number of software changes may vary from project to project. The
project dependent features shared by each variable will cancel
out when the ratio of software changes per computer run is taken.

The resulting relative measure is project independent.

The second factor is the need for fixed time intervals com-
mon to all projects. To normalize for time, project milestones
were used. The time into a project might be twenty percent into

coding instead of ten weeks into the project, for instance.




When computing the baselines one other factor was con-
Sidered. At any given interval during @evelopment a variable may
measure either the total number of events that have occurred from
the beginning of development (cumulative) or the number of of
events that have occurred since the 1last measured interval
(discrete). Since these approaches may convey different informa-

tion it was felt that they both should be used.

For simplicity, the baseline for each relative measure was
defined as the average and sténdard deviation computed for the
measure at predetermined intervals. A project’s progress may now
be charted by the software manager. At each interval in a pro-
Jects development the relative measures are compared with their
respective baseline. Any measures outside a standard deviation
are flagged. These measures are then interpreted by the project
manager to determine how the project is progressing. A flagged
measure may indicate a project is developing exceptionally well

or it may indicate a problem has been encountered.

The interpretation of a set of flagged measures is a three
step process. First, the manager must determine the possible
interpretations for each flagged relative measure using lists of
possible interpretations developed and verified based on past

projects.

Second, the union of the lists of possible interpretations
of each flagged measure must be taken. The list formed by this

union contains all the possible interpretations ordered using the



number of times each interpretation is repeated in the different
lists. The larger the number of overlaps a possible interpreta-
tion has, the greater the probability it is the correct interpre-

tation.

Third, the manager must analyze the combined list and deter-
mine if a problem exists. Interpretations with an equal number
of overlaps all have an equal probability of being the correct
interpretation. If none of the possible interpretations for a
given relative measure overlap then the relative measure should

be considered separately.

When analyzing the interpretations, three pieces of informa-
tion must be considered; the measurements, the point in develop=-
ment, and the managers knowledge of the project. A relative
measure, m#y indicate different things dep;nding on the stage of
development. For instance, a large amount of computer time per
computer run early in the project may indicate not enough unit
testing is being done. Personal knowledge may also give valuable

insight.

A fundamental assumption for using this methodology is that
similar type projects evolve similarly. If a different type of
project was compared to this database, the manager would have to
decide whether the baselines were applicable. Depending on the

type of differences, the established baselines may or may not be

of any value,




EXAMPLE 1:

Forty percent into coding a software manager finds that the
lines of source code per software change is higher than normal.
A list previously developed is examined to determine what the
relative measure might indicate. The possible interpretations
for a large number of lines of source code per software change
might be:

- good code

- easily developed code

- influx of transported code

- near build or milestone date

- computer problems

- poor testing approach
If this were the only flagged measure the manager would then
investigate each of the possibilities. If the value for the

measure is close to the norm less concern is needed than if the

value is further away.

If in addition to lines of source code per software change
the number of computer runs per software change was higher than
normal, the manager would also examine this measure. The possi-
ble interpretations for a large number of computer runs per
software change might be:

- good code

- lots of testing

- change backlog

- poor testing approach
The union of the possible interpretations of these two measures
indicates that the strongest possible interpretations are 1) good

code and 2) a poor testing approach. The number of possibilities

to 1investigate 1is smaller because these are the only measures
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which overlap. The manager must now examine the testing plan and

decide whether either of these interpretations reflect what is'

actually occurring 1in the project. If these ¢two possible
interpretations do not reflect what is happening on the project,

the manager would then examine the other interpretations.

III. Baseline Development

To develop a baseline one must first have variables whose

measurements were taken weekly for several projects. Five vari-

ables in the SEL database were used. The lines of source code,’

number of software changes, and number of computer runs were col-
lected on the growth history form. The amount of computer time
and programmer hours were collected on the resource summary form.
Measurement of these variables started near the beginning of cod-
ing. In this study, nine separate projects were examined whose
development was documented, with sufficient data, in the SEL
database. The projects ranged in size from 51-112K lines of
source code with an average of 75K. No examination was done for

the requirements or design phases.

Once the variables were chosen the average and standard
deviation was <computed for each baseline. Some baselines suf-
fered from limited data points during the beginning of the coding
phase. A couple of the projects, in which problems were known to
have existed, were flagged as soon as data on these projects
appeared, but this was fifty percent of the way into céding. It

is not known how much earlier they would have appeared, if data
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baseline: computer time per run

Sample Baseline
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existed at the early intervals.

IV. Interpretation of Relative Measures

Once a set of baselines are established new projects may be
compared to them and potential problems flagged. To interpret
these flagged relative measures a list should be developed with
each measures possible interpretations. Each list must consider
the possible interpretations of the relative measure when it 1is
either above normal or below normal. What each component vari-

able actually measures should also be considered when the dif-

ferent lists are developed.

A list was developed with possible interpretations for each
relative measure being examined in the <context of the SEL
environment. In another environment the interpretation of these
measures might be different. These lists are subdivided into two
categories; above and below normal. The above normal category
contains possible interpretations for the relative measure when
it is outside one standard deviation from the average in the
positive direction. The below normal category refers to
interpretations when the measure is outside one standard devia-

tion from the mean in the negative direction.

One of the reasons this methodology works is because of the
implicit interdependencies between different relative measures.
To show these interdependencies more explicitly a cross reference

chart has also been provided for each interpretation to indicate
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other relative measures that can have the same interpretation. A
number in the cross reference section indicates the list number
of a relative measure that can have the same interpretation. The
position of the 1list number in the 4-quadrant cross reference
section indicates whether both 1interpretations are found with
above normal values, both with below normal values, or one with

above and the other with below normal values.

With these lists a set of flagged relative measures may be
evaluated. When a relati?e measure is flagged, its associated
list is examined for possible interpretations. Overlaps of this
list with the lists of other flagged relative measures form the
new list of what these relative measures together might indicate.
The more overlaps a particular interpretation has, the greater
the -chance it is the correct interpretation. Interpretations
with the same number of overlaps mugt be considered equally. The
more relative measures flagged the more serious the problem may

be. It 4is up to the manager to determine whether the deviation

is good or bad.

V. Monitoring a Software Project’g Development

Once the baselines have been developed and the lists of pos-
sible interpretations have been put together a software manager
may monitor the actual development of a project. Example 1
demonstrated how a single interval may be interpreted. The fol-
lowing discussion will trace the development of an actual pro-

Ject. During the actual use of this methodology, influence would
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be exerted to correct problems as soon as they are identified.
With this study, we must be content to study a projects evolu-

tion, without hindrance, and see at what points problems could of

been detected.

Project twenty® was chosen for this examination because data
existed throughout the projects development. In most respects
project twenty was an average project. The project did have a
lower than normal productivity rate. The lower rate may be par-
tially explained by the fact the management was less experienced
when compared to other projects. The project also suffered from
some delayed staffing. Changes in staffing will be noted when

the different time intervals are discussed.

The tables on the following page show which relative meas-
ures were flagged when project twenty was compared to the base-
lines for each stage of Qevelopment. The numerical values
represent how many standard deviations each flagged relative
measure was from the baseline. The baseline for each relative

measure was calculated using all nine projects.

Start of Coding:

At the start of coding only one relative measure is flagged.
The smaller than normal number of software changes per line of

Source code using the discrete approach reflects work done during

* The numbering convention used is an extension of the one
first used by Bailey and Basili [Bailey81].
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the design phase. The lists designed in the previous section
were directed towards code production and testing and do not
apply to this time interval when using the discrete approach.
This measure may 1indicate good specifications or lots of PDL
being generated. The manager might want to examihe this measure
later if it constantly repeated. Since it is the only meaéure

flagged at this time it will be ignored.

20% Coding:

The flagged relative measures found using the discrete
approach at this point represent the work done from the start of
coding until twenty percent of the way through coding. The 1list
of possible interpretations for the flagged relative measures,
generated from the 1lists made previously for the individual rela-
tive measure, would look like:

# overlaps interpretation

bad specifications
code removed
low productivity
high complexity
- error prone code
lots of testing
good testing
changes hard to isolate
changes hard to make
unit testing being done
easy errors being found

- MM NDWW

The strongest interpretations are bad specifications and code
being removed. If the actual history is examined one finds that
during this period there were a 1lot of specifications being

changed. This resulted in code which was to be modified being
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discarded and new code being written. During the early period
lots of PDL was being produced but very little new executable
code. The list of possible interpretations does show that 1low

productivity is also a strong possibility.

404 Coding:

The flagged relative measures which appear using the cumula-
t;ve approach, from this time period on, are stronger indicators
than the ones used in the first couple of intervals because the
average is computed using more data points. The use of the
discrete approach for the interval of twenty to forty percent 1is
still dependent on three data points. The list of possible
interpretations for this time period is:

# overlaps interpretation

low productivity

high complexity

error prone code

bad specifications

code being removed
changes hard to isolate
changes hard to make
lots of testing

unit testing being done
good testing

easy errors

— ad ad od D

The number of possibilities is larger with this set of posgible
interpretations. Five interpretations are slightly stronger than
the others. During the actual development, the first release of
the project was made. The amount of code actually written was
also lower than normal during this period. The wuse of the

discrete approach gives a stronger feeling that code is not being
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written. Transported code tends to be installed in large blocks

which can be isolated using the discrete approach.

50% Coding:

The relative measures flagged during this period are the
same as the ones flagged at the twenty percent coding interval.
The deviation from the norm for this interval is larger. The
larger deviation may indicate a more serious problem. The prob-
lem may of been just as serious earlier but without the extra
data points, that are now available, it could not be determined.
The possible interpretations may be taken from the list developed
earlier. Bad specifications and code removal were not factors
during this period. The next three highest priority interpreta-
tions were; high complexity, error prone code, and low produc-
tivity. 1In addition to this the manager should be concerned with
the continued appearance of the relative measure, programmer
hours per computer run, as seen using the cumulative approach.
This may indicate a lot of testing going on. This in conjunetion
with error prone code as a possible interpretation may indicate
trouble. During actual develqpment this period was spent
developing code for the second release. The project manager felt
that code was still not being developed quickly enough during

this period.

60% Coding:

>
|

63



Only one relative measure is shown at this interval. The
number of programmer hours per computer run using the cumulative
approach is lower than normal for the third consecutive time.

This should concern the manager because when examining the list

for this measure one finds:

error prone code

lots of testing

easy errors being fixed
Since the occurrence of this measure is persistent it may indi-
cate that the problem was corrected but not enough effort was
expended to completely compensate for the past problems. It
might also indicate the problem still exists. During the actual
project it was found that while a lot of code was written, it had
not been throughly tested. Release two was made during this
period which could explain a heavy test 1load. Two additional
staff members were added to the project during this phase to aid

in coding and testing.

80% Coding:

The eighty percent coding interval does not show any meas-
ures outside the normal bounds. The addition of two staff
members during the sixty percent coding phase, as well as the
addition of a senior staff member during this phase, appears to
have adjusted the project back along the lines of normal develop-
ment. ~To fully compensate for the earlier problems one might

expect some of the measures to swing in the other direction away




from the average. The fact this over correction did not occur

might explain the problems encountered in the next section.

Start of System and Integration Testing:

The flagged relative measures at this time period reflect
the build up of effort for the third and final release. The list
of possible interpretations for the collective set of flagged
measures looks like:

# overlaps interpretation

high complexity

bad specifications

code being removed

error prone code

low productivity

lots of testing

changes hard to isolate

unit testing being done

good code

poor testing

changes hard to make

good testing

compute bound algorithms
being run

easy errors being fixed

— ad md - NN W W

Since the code did have a past history of poor testing an unusu-
ally large build up of testing should be exﬁected. The two
interpretations that apply most to this situation are 1lots of

testing and error prone code.

50% System and Integration Testing:

Only one relative measure is flagged at this interval. This
measure was flagged using the cumulative approach. An examina-

tion of the measure at the previous interval shows a very high
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value. A slow drop off from this high measure is to be expected
when using the cumulative approach. An examination of possible

interpretations that would apply for this period of development

include:

high complexity

lots of testing

unit testing being done
testing code being removed

A lot of testing is certainly indicated by past history.

Start Acceptance Testing:

The relative measures flagged at this interval reflects the
build up in testing before the start of acceptance testing. The
list of possible interpretations looks like:

# overlaps interpretation

bad specifications

code being removed

high complexity

low productivity

error prone code

lots of testing

changes hard to isolate
changes hard to make
unit testing being done
good testing

—_ N NDW W

Since little code was being developed during the testing period,
a large amount of testing with errors being found is the most
reasonable interpretation of these flagged measures. The early
history of poor testing may be seen here with errors being

uncovered late.




End Acceptance Testing:

The two flagged relative measures at the end of acceptance
testing reflect the clean up effort being made on the code. An
average amount of computer time and an average number of computer
runs indicates that the acceptance testing is going well. The
project was behind schedule due to the eariier probléms encoun-
tered. Clean up was done during the acceptance testing phase in

an attempt to get the project out the door as soon as possible.

As seen in this example, the problems that occur during a
projects development are reflected in the values calculated for
the relative measures. The methodology preposed can be used to
monitor projects. The number of possible interpretations
inereases with each new flagged relative measure. The ordering
of the measures by the number of overlaps provides an easy method
of sorting the possible interpretations by priority. Another
method of sorting the possible interpretations could include a
factor that considers both the number of overlaps and the proba-
bility of a given 1interpretation being the cause at a given
interval. The weighting of interpretations for a given interval
could be <calculated using the pattern of occurrence of the dif-
ferent interpretations which have appeared during the same inter-

val in past projects.

VI. An Alternate Approach




Flagged relative measures might also be interpreted using a
decision support system. The data for the various relative meas-
ures would be stored in a knowledge base along with a set of pro-
duction rules. To evaluate a project the values for each rela-
tive measure would be entered into the systen. The knowledge
base would compare the relative measures to their respective
baselines, determine which relative measures were outside the
norm, and interpret these relative measures using the production
rules. A list of possible interpretations ordered by probability

would be generated as a result.

The difference between a decision support system and the

approach presented in this paper is the method of interpreting

the flagged relative measures. Each production rule in the deci-
sion support-system is the logical disjunction of several flagged
measures which yields a given interpretation. Each production
rule 1is assigned a confidence rating which is then used to rate
the possible interpretations. The lists for the relative. meas-
ures provided earlier in the paper may be easily converted to
production rules using the cross reference section. To develop
the production rules for an interpretation one must generate the
various combinations of relative measures which might reasonably
imply the interpretation. Some relative measures may not imply a
particular interpretation unless they are found in conjunction
with another relative measure. Once the production rules are
known and a knowledge base constructed a decision support system

may be Dbuilt. For an example of a domain independent decision




support system see Reggia and Perricone [Reggia82].

VII. Summary

The methodology presented in this paper showed that 4invari-
ant relationships exist for similar projects. New projects may
be compared to the baselines of these invariant relationships to

determine when projects are getting off track.

The ability of the manager to interpret the measures that
fall outside the norm is dependent on the amount of information
the underlying variables convey. The manager must decidg what
attributes are to be measured (e.g. productivity) and pick vari-
ables that are closely related to them and are also measurable
throughout the project. As an example, a variable like lines of
code may be too general when measuring productivity. Measuring
the newly developed code, either source code or executable code,
would be more informative since these variables are more directly
related to effort. How applicable an interpretation is for the
period currently being examined should also be considered when
ordering the list. The variables the manager finally decides on

are then combined to form relative measures.

One method of interpreting a relative measure is by associ-
ating lists of possible interpretations with it. When a relative
measure appears outside the norm, the list of possible interpre-
tations is considered. If more than one relative measure is out-

side the norm the lists are combined. The more times a possible



interpretation is repeated in the lists, the greater the proba-
bility it is the cause. How applicable an interpretation is for
the period being examined should also be considered when ordering
the list. The manager must investigate the suggested causes to

determine the real one.

VIII. Conclusion

The ability to monitor a projects development and detect
problems as they develop may be feasible. The methodology pro-

posed showed favorable results when examining a past case.

The use of baselines and lists of interpretations for con-
paring projects provides an easy method for monitoring software
development. Both the baselines and the lists of interpretations
may be updated as new projects are developed. As more knowledge
is gleaned the accuracy of this system should improve and provide

a valuable tool for the manager.
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